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The aim of this paper is to present a versatile scheme for the computation of optical properties of solids, with
particular emphasis on realistic many-body calculations for correlated materials. Geared at the use with local-
ized basis sets, we extend the commonly known lattice “Peierls substitution” approach to the case of multi-
atomic unit cells. We show in how far this generalization can be deployed as an approximation to the full
Fermi-velocity matrix elements that enter the continuum description of the response of a solid to incident light.
We further devise an upfolding scheme to incorporate optical transitions that involve high-energy orbitals that
had been downfolded in the underlying many-body calculation of the electronic structure. As an application of
the scheme, we present results on a material of longstanding interest, vanadium dioxide, VO2. Using dynamical
mean-field data of both, the metallic and the insulating phase, we calculate the corresponding optical conduc-
tivities, elucidate optical transitions and find good agreement with experimental results.
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I. INTRODUCTION

Correlated matter is characterized by an enormous sensi-
tivity with respect to changes in external parameters. It is the
merit of this responsiveness that a remarkable richness of
properties emerges in these systems. Correlation effects
seem, for instance, to be a vital issue to outstanding phenom-
ena such as high-temperature superconductivity and colossal
magnetoresistance. In the latter case, the possibility of tuning
the fundamental behavior of a material by an external field
will undoubtedly lead to yet improved data storage devices.
A better understanding of the various effects of strong corre-
lations is thus a highly desirable goal of condensed-matter
physics.

On the experimental side, numerous techniques have been
devised for and applied to the study of correlated materials
of ever growing complexity. Optical spectroscopy, which is
the subject of this paper, is, in a way, the most natural among
them: optical detectors are sampling the response to incident
light, as do our eyes, albeit accessing frequencies, and thus
phenomena, that are beyond our vision. The technique is
especially suited for tracking the evolution of the system
under changes in, for instance, temperature or pressure. This
is owing to a generally high precision, and the fact that,
contrary to, e.g., photoemission spectroscopy or x-ray ex-
periments, results are obtained in absolute values. Especially,
the existence of sum-rules allows for a quantitative assess-
ment of transfers of spectral weight upon changes in the
system properties. Therewith optical spectroscopy is particu-
larly adapted for the study of correlated materials.1–5

On the theory side, while weakly correlated materials are
well-described within density functional theory �DFT�,6 e.g.,
in the local density approximation �LDA�,7 and moderate
correlation effects are captured by perturbative approaches,
such as Hedin’s GW approximation,8 it was the advent of
dynamical mean-field theory �DMFT� �for reviews see, e.g.,
Refs. 9 and 10�, and its realistic extension, LDA+DMFT �for

reviews see Refs. 11 and 12�, which allowed for the descrip-
tion and understanding of several metal-insulator transitions
that are derived from the Mott-Hubbard or related mecha-
nisms. Though our discussion of optical properties within
realistic many-body approaches is quite general and appli-
cable to other techniques, we present results on VO2 that are
based on LDA+DMFT calculations.

The paper is organized as follows: after having now ex-
panded on the potency of optical spectroscopy and the mo-
tivation for more theoretical efforts, we will in the remainder
of Sec. I briefly review experimental and theoretical knowl-
edge about vanadium dioxide. In Sec. II we develop our
formalism for the optical conductivity within realistic calcu-
lations. Sec. III is devoted to a detailed discussion on Fermi
velocities. This part contains our major innovations. Readers
less interested in technical details are welcome to jump di-
rectly to Sec. IV, which presents our theoretical optics spec-
tra for vanadium dioxide in both the metallic and the insu-
lating phase.

Vanadium dioxide—The material

1. Basic electronic structure

At its metal-insulator transition13 �Tc=340 K�, VO2
transforms from a metallic high-temperature phase of rutile
structure into an insulating monoclinic �M1� phase, in which
the vanadium atoms pair up to form tilted dimers along the c
axis. This M1 phase was found to be nonmagnetic.14

Over the decades, several scenarios were evoked to ex-
plain this metal-insulator transition. Not being the emphasis
of the current paper, we shall here only briefly summarize the
basic electronic structure.

VO2 has a vanadium 3d1 configuration and the crystal
field splits the 3d manifold into t2g and empty eg

� compo-
nents. The former are further split into eg

� and a1g orbitals. In
the rutile phase these orbitals overlap, accounting for the
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metallic character. In the M1 phase, the a1g split into
bonding/antibonding orbitals, due to the aforementioned va-
nadium dimerization.

The Goodenough scenario15,16 of the insulator advocates
the structural effect of the unit-cell doubling due to the dimer
formation as the main origin of the gap formation, and thus
attributes the insulating behavior to a Peierls transition.17

Zylbersztejn and Mott18 on the other hand stressed the im-
portance of local Coulomb interactions, and thought the tran-
sition to be of, what we call today, the Mott-Hubbard type.
Experiments19–24 were interpreted to support one or the other
of the two scenarios. Important to note is that neither of the
two phases are well-described within standard band-theory
approaches. In the rutile phase these miss bandwidth-
narrowing and satellite features, as seen, e.g., in
photoemission,21 and the bad-metal conductivity seen in
transport measurements.25 In the M1 phase, the problem is
even more fundamental, since band theory fails to produce
an insulating behavior.26–28 For reviews see, e.g. Refs. 27,
29, and 30. As we will detail later, the LDA+DMFT ap-
proach succeeds in describing the experimental findings of
both the metallic31–33 and the insulating33 phase. As a matter
of fact, the current calculations of optical properties rely on
our previous LDA+DMFT work33–35 which in particular ex-
tended on the interpretation of the nature of the insulating
M1 phase. Indeed, it was revealed that correlation effects
enhance the Peierls effect, while nonlocal fluctuations pre-
serve the coherence of one-particle excitations. In our pic-
ture, M1 VO2 is not a genuine Mott insulator, and we re-
ferred to it as a “many-body Peierls” insulator.35

Compatibility with experimental results on the optical con-
ductivity strengthens this picture. For the insulating phase,
also GW type of calculations30,36–38 as well as
LDA+U-based approaches28,39 open the charge gap. Further-
more, VO2 has also been studied within cluster-based meth-
ods �see, e.g., Ref. 40–42�.

2. Insights by optical measurements

Optical measurements on VO2 were first performed by
Barker et al.43 and Verleur et al.44 By probing different ori-
entations of single-crystal samples, they evidenced an aniso-
tropy in the optical response for the M1 insulator. More pre-
cisely, the conductivity depends on whether the electric field
is parallel or perpendicular to the crystallographic rutile c
axis when going below the transition temperature. This is to
be expected from the changes in the crystal structure and the
unit-cell doubling along this axis. The anisotropy was con-
firmed by ultraviolet reflectance measurements45 and x-ray
experiments21,46 �see also Ref. 47�. Ladd et al.25 performed
experiments under pressure, and noticed that c-axis stress
reduces the transition temperature considerably more than is
the case for hydrostatic pressure. Okazaki et al.1 studied re-
flectance spectra of thin films with an orientation of the elec-
tric field perpendicular to the rutile c axis as a function of
temperature, and found indications for electron-phonon cou-
pling. Recent studies by Qazilbash et al.48 �see also Ref. 49�
on polycrystalline films with preferential �010� orientation50

confirmed the bad-metal behavior of rutile VO2 evidenced in
transport experiments.25 Indeed, rutile VO2 is found to

violate48 the Ioffe-Regel-Mott limit for resistivity
saturation,51 i.e., the electron mean-free path is comparable
to, or smaller than, the lattice spacing and Boltzmann trans-
port theory breaks down. As we shall see below, pronounced
differences in the optical response are found between the
individual experiments.

Theoretically, the optical response of M1 VO2 was inves-
tigated by means of a self-consistent model GW calculation
by Continenza et al.,36 which was found to improve on LDA
results for the dielectric function when comparing with
experiments.52 Also, a clear polarization dependence was
evidenced.

Further, the dielectric response of both the metallic and
the insulating phase were calculated within LDA by Mos-
sanek and Abbate.53 In the metallic phase, peak positions and
the polarization dependence were qualitatively captured. The
issue of the bad metallic behavior was not addressed, which
is natural since it lies beyond band theory. As to the insulat-
ing M1 phase, a rigid shift was introduced to the LDA band
structure, such as to “artificially” produce a gap. This proce-
dure, again, resulted in qualitative agreement with experi-
ment. However, we believe that the electronic structure is
characterized by an enhanced a1g bonding/antibonding
splitting,35 which is not reproduced by an orbital-
independent shift. An orbital-dependent one-particle poten-
tial, on the other hand, actually does correctly capture spec-
tral properties to a surprising degree.34,35 We will come back
to this in Sec. III.

II. OPTICAL CONDUCTIVITY IN REALISTIC
CALCULATIONS

A. Optical conductivity from DMFT calculations

Within the field of strongly correlated electrons, calcula-
tions of the optical conductivity within the DMFT frame-
work were first performed by Jarrell et al.,54 and Pruschke et
al.55 for the case of the Hubbard model. Rozenberg and
co-workers56,57 studied the phenomenology of the different
optical responses of the Hubbard model throughout its phase
diagram in conjunction with experiments on V2O3. In the
realistic LDA+DMFT context, optical conductivity calcula-
tions were first performed by Blümer58,59 for the case of
degenerate orbitals. A more general approach was developed
in Ref. 60 for the study of transport properties. Further recent
LDA+DMFT works that use simplified approaches to the
Fermi velocities can be found in Refs. 4 and 61. Our work
goes along the lines of the mentioned approaches. We will
however use a full Hamiltonian formulation, therewith al-
lowing for the general case of nondegenerate orbitals, and we
extend the intervening Fermi velocities to multiatomic unit
cells, which becomes crucial in calculations for realistic
compounds.

Alternative techniques were presented by Perlov et al.62 in
the Korringa-Kohn-Rostoker �KKR� context, and by Ou-
dovenko et al.63 The idea in the latter work is to diagonalize
the interacting system, which allows for the analytical per-
forming of some occurring integrals due to the “noninteract-
ing” form of the Green’s function. Owing to the frequency
dependence of the self-energy, however, the diagonalization
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has to be performed for each momentum and frequency sepa-
rately, so the procedure may become numerically expensive.

First accounts of the presented optics scheme have been
given in Ref. 64 for V2O3 �based on the electronic structure
of Ref. 65�, while applications can be found in Refs. 66 and
67.

B. Optical conductivity

The optical conductivity tensor ����q ,�� is defined as the
linear response that relates the total electric field in the solid
to the charge current density:68

�j��r,t�� = �
�

����q,��E��r,t� . �1�

Here, � and � denote cartesian coordinates and � · � indicates
the quantum-mechanical expectation value.

In the following we will derive an expression for the long-
wavelength limit �q=0� of the real part of the conductivity
tensor, which we shall refer to as the optical conductivity
R������. The starting point of the derivation is the funda-
mental Hamiltonian of the system, H=H0

A+Hint, with H0
A

being the one-particle part, with the coupling to the �classi-
cal� light field via its vector potential A�r , t�:

�
�
� d3r��

†�r,t�	 1

2m

ı	 � +

e

c
A�r,t��2

+ V�r�����r,t� ,

�2�

where we have chosen the Coulomb gauge, � ·A=0. V�r� is
any one-particle potential. In practice, it will, e.g., be the
effective Kohn-Sham potential of density functional theory
within the LDA. We emphasize that this notation in terms of
the field operators, �, is still basis free. Hint contains, in our
case, electron-electron interactions, involving only two-body
terms. Then, it commutes with the charge density and is trivi-
ally gauge invariant.85

Gauge invariance of the full Hamiltonian leads to charge
conservation and, via the continuity equation e�t
=−� · j, we
obtain the expression for the charge current-density j��r , t�

− Hı
e	

m �
�

��
†�r,t������r,t�� +

e2

mc
A��r,t�
�r,t� ,

�3�

where H denotes the hermitian part, and we assumed the
vector potential to be directed along the � direction. In the
Coulomb gauge, the second term in Eq. �3� is the diamag-
netic current, which we will drop hereafter, since its contri-
bution to the conductivity is purely imaginary. The first term
is called the paramagnetic current. For a discussion on their
physical interpretation see, e.g., Ref. 69. The current expec-
tation value is, within the Kubo linear-response formalism,
linked to the current-current correlation function. For the op-
tical conductivity, we then find

R������ = −
I����� + ı0+�

�
, �4�

where ���� is the long-wavelength limit �q=0� of

����q,�� = −
1

	V
�Tj��− q,��, j��q,0�� �5�

which we have written in the imaginary time Matsubara for-
malism. So far, all quantities live in the spatial continuum.
As announced, we shall make the connection with many-
body techniques that work in localized basis sets. At this
point, however, we shall first develop the field operators in a
Bloch-like basis, ��r ,��=�kL��kL �r�ckL����. Here,
L= �n , l ,m ,� denotes orbital �n , l ,m� of atom  within the
unit cell. ckL�

† and ckL� are the usual �discrete� creation and
annihilation operators. The momentum sum runs over the
first Brillouin zone. Later on, we will switch to the Wannier-
like, real-space basis �RL�=�kexp�ıkR��kL�, to which the
aforementioned notion of localization will apply. Here, R
labels the unit cell, which only in case of a one-atomic basis
is equivalent to the atomic position. This distinction will
prove important later on. Taking the limit of long wave-
lengths, which in this context is the familiar dipole approxi-
mation, we find for the paramagnetic current

j��q = 0,�� = e �
k,LL�,�

vk,�
L�Lck�L��

† ���ckL���� �6�

with the so-called Fermi velocity, or dipole matrix element

vk,�
L�L =

1

m
H�kL��P��kL� , �7�

where P� is the � component of the momentum operator. In
the evaluation of q=0 correlation functions in infinite dimen-
sions, thus in a dynamical mean-field spirit, vertex correc-
tions are absent in the one orbital case.9,70 In other words,
electron-hole interactions effectively vanish, and the two-
particle quantity, Eq. �5�, can be decoupled into the product
of two one-particle Green’s functions. In the following, we
shall neglect vertex corrections, though the above statement
is not valid for the cluster or multiorbital case. Indeed, one
can show that only the elements of the Fermi velocity that
are diagonal in orbital space have the odd parity with respect
to momentum that is required for the vanishing of vertex
correction in d=�. Instead of advancing toward a more strin-
gent two-particle formulation in the model case, it is our
objective to strive after a formalism that accounts for the
complexity of realistic state-of-the-art electronic structure
techniques, such as LDA+DMFT. With this simplification,
the derivation, after continuing to real frequencies
�ı�n→�+ ı0+�, yields

R������ =
2�e2	

V
�
k
� d��

f���� − f��� + ��
�

�tr�A�k,�� + ��v��k�A�k,���v��k�� , �8�

where tr stands for the trace over orbitals and A�k ,��=
−1 /�I��+�−H0�k�−�����−1 and v��k� are the orbital ma-
trices of the momentum-resolved spectral functions and the
Fermi velocities, respectively. H0 denotes the one-particle
Hamiltonian in the absence of the external field. Hence, in
total, the conductivity acquires the well-known form of a
frequency convolution of momentum-resolved spectral func-
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tions, with the Fermi velocities modulating the amplitudes of
the spectral weight. Due to the fact, mentioned earlier, that
the interaction part of the Hamiltonian commutes with the
charge density, the Fermi velocities are those of the nonin-
teracting problem H0. The many-body physics only enters
the spectral functions via the evaluation of the expectation
value in the correlation function of Eq. �5�.

III. FERMI VELOCITIES

The Fermi-velocity matrix element, Eq. �7�, is readily
evaluated when, e.g., working within a plane-wave basis set.
Yet, many-body techniques, such as DMFT and its realistic
extensions, that are geared at improving on local interactions
in the spirit of the Hubbard model, necessitate the use of
localized orbital sets, e.g., muffin-tin-derived orbitals,
L /NMTO �Refs. 71 and 72� or other Wannier functions.73

While a computation of the full matrix element, Eq. �7�, is in
principle still possible within these basis sets, it becomes
rather tedious from the practical point of view. Therefore, we
have devised a handy approximation, explicitly geared at the
use with localized orbitals, which allows for a reliable calcu-
lation of optical properties at a rather low computational
cost.66,67

A. Lattice formulation

Peierls substitution and its generalization

In the above, we coupled the light field to the electronic
degrees of freedom of the solid via the standard minimum
coupling, and developed the continuous field operators into a
basis, which led to the given Fermi velocities of Eq. �7�. A
different approach is to instead develop first the Hamiltonian
in this basis, and to couple the vector potential directly to the
site, or lattice operators in a way that verifies gauge invari-
ance. Consider the Hubbard model

H = − �
ij,LL�,�

tij
L�LciL��

† cjL� + Hint. �9�

Then, the philosophy of the “Peierls substitution”74,75 ap-
proach is to add the following phase factors to the lattice
operators:75 ciL�

† →ciL�
† exp�ı e

c	�RiLdrA�r , t��. Here, RiL de-
notes the atomic positions. These can be separated into

RiL = Ri + 
, �10�

where the former indexes the unit-cell i and the latter the
atom  within a multiatomic unit cell. Hence, the coupling is
governed by the inner structure of the unit cell, and not by
the periodicity of the lattice vectors. While this has already
been noticed and exploited in the context of finite-size clus-
ter calculations �see, e.g., the Refs. 76 and 77�, in electronic
structure calculations for the infinite solid, this seemingly
trivial distinction leads to important terms in the Fermi ve-
locities, which to our knowledge have so far not been con-
sidered.

Equally, in a multiatomic environment, the lattice position
operator R can be defined as

R = �
iL�

RiLciL�
† ciL�. �11�

When now supposing the interactions in Eq. �9� to be only of
density-density type in the lattice operators �cf. footnote
above�, then the above phases only appear in the kinetic part
of the Hamiltonian. When additionally assuming a slowly
varying vector potential such as to approximate the integral
in the exponent, the Peierls approach can also be seen as a
substitution for the hopping amplitudes in the above lattice

Hamiltonian, tij
L�L→ tij

L�L exp�ı e
	cA�t��RiL�−R jL��. We further

remark that evidently the vector potential only couples to
nonlocal hopping elements, i.e., within this approach intra-

atomic transitions, �i ,L= �n , l ,m ,��→ �i , L̃= �n� , l� ,m� ,��
in the above notation, are absent. From the thus defined sub-
stitution, we can compute the current either by means of the
continuity equation, or by a functional derivative of the
Hamiltonian with respect to the vector potential. One finds

j� = e �
LL�,k,�

vk�
L�LckL��

† ckL� �12�

with the velocity

vk�
L�L =

ı

	
�
ij

tij
L�L�RiL�

� − RjL
� �e−ık�Ri−Rj�. �13�

Using the separation Eq. �10�, and introducing the usual

Hamiltonian element Hk
L�L=−�ijtij

L�Le−ık�Ri−Rj�, we find a gen-
eralized Peierls expression

vk�
L�L =

1

	
��k�

Hk
L�L − ı�
L�

� − 
L
��Hk

L�L� . �14�

The first term is the familiar Fermi velocity, given by the
momentum derivative of the Hamiltonian. It contains hop-
ping processes that take place between different unit-cells i
and j. While absent in the one-atomic case, =�, the second
term, which to our knowledge is new, becomes crucial, once
calculations of realistic materials are performed. It accounts
for hopping amplitudes between different atoms � and 
within the same unit cell. Indeed when considering, e.g., a
simple-cubic one-atomic system, first in its primitive unit
cell, and then in a nonprimitive unit cell that is doubled in
the direction along which the momentum derivative is taken.
Then it is the second term in Eq. �14� that assures that the
optical conductivities of the two equivalent descriptions are
the same.86

The above formula is very handy, since the only interven-
ing matrix element is that of the Hamiltonian and its momen-
tum derivative. No other integrals involving the LDA wave
functions, which are cumbersome to handle in the chosen
basis, occur in this case. We note that the above expression is
hermitian. Yet, in general, it has no well-defined parity with
respect to the momentum k, even when assuming inversion
symmetry of the Hamiltonian. Only the elements that are
diagonal in the atomic  indices have the required odd parity
that leads to the cancellation of vertex corrections in the limit
of infinite coordination.
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B. Continuum formulation

Assessing the Peierls substitution

In the preceding section, an expression for the Fermi ve-
locity was deduced from the lattice formulation of the solid.
This has to be contrasted to the proper matrix element, Eq.
�7�, that originates from the continuum description. Now, a
valid question is whether, and under which circumstances,
the generalized Peierls velocity can be employed as a reliable
approximation to the true dipole matrix element. In the Ap-
pendix we show that the latter can actually quite naturally be
split into the generalized Peierls expression and a correction
term that recovers the full matrix element. The impact of this
supplementary term decreases with an increasing localization
of the basis functions. Indeed, in the limit of strongly local-
ized orbitals, the only missing terms are atomic transitions,
which, as discussed above, are absent by construction in the
�generalized� Peierls approach, and have to be accounted for
separately.75 Therewith, the above derived expression of the
Fermi velocity is particularly suited for use in Wannier func-
tion setups for compounds with d or f orbitals, which satisfy
the requirement of localized orbitals.

In the Appendix, we give explicit expressions for going
beyond the generalized Peierls approach, e.g., we derive a
formula for including intra-atomic transitions within the cur-
rent setup of localized orbitals. In the practical calculations
for VO2 within a localized basis, however, we found these
terms to be negligible as evidenced by the good agreement
between the Peierls treatment and experimental findings.

C. Downfolding of Fermi-velocity matrix elements

Upfolding of the downfolded response

Many-body calculation for realistic systems often work in
a downfolded setup. In other words, after a band structure
has been obtained from, e.g., an LDA computation, orbitals
that are supposed to be subject to only minor correlation
effects are integrated out and linearized. These are typically
high-energy excitations, and thus the downfolding procedure
is used to construct an effective low-energy problem, which
is simpler to be tackled with a many-body approach. The
linearization step preserves the Hamiltonian form of the one-
particle part of the problem. Thereby the influence of corre-
lation effects beyond the one-particle band structure of these
orbitals, and also the possible feedback on the others, are
neglected. The many-body calculation thus lives in an orbital
subspace only, and all other orbital degrees of freedom re-
main unaffected. See however, e.g., Refs. 78–82 for ways
how to include uncorrelated orbitals within the
LDA+DMFT cycle. For a recent scheme to incorporate also
self-energy effects of higher-energy orbitals into an effective
model see Ref. 83.

Although in the computation of the Fermi velocities, Eq.
�7�, only the “noninteracting” Hamiltonian enters, several
complications occur, when it comes to deducing of optical
properties from downfolded many-body calculations: not
only are transitions from and to high-energy orbitals trun-
cated, but also the optical transitions within the block of
low-energy orbitals acquire wrong amplitudes. This owes to

the fact that, evidently, the computation of transition matrix
elements and the downfolding procedure do not commute.
Here one has to distinguish between the effect on the full
matrix element from that on the approximation of the Peierls
velocity. Indeed, the orbitals of the downfolded system are in
general less localized than the ones of the original problem,
and the Peierls approximation therewith is less accurate. For
an instructive discussion on this subject see also Ref. 75.

Here we explain a simple strategy64 for the computation
of the optical conductivity, applicable to many-body elec-
tronic structure calculations that were performed using a
downfolded one-particle Hamiltonian. In line with the above
remarks, this procedure yields better results than when com-
puting the Fermi velocities directly from the downfolded
system. The procedure is, moreover, not limited to the use of
the Peierls approach.

The central quantity to look at in this respect is the orbital
trace of the matrix product of Fermi velocities and
momentum-resolved spectral functions in Eq. �8�

tr�vkAk����vkAk��� + ��� . �15�

Since the trace is invariant under unitary transformations, the
above can be written as

tr�Uk
†vkUkÃk����Uk

†vkUkÃk��� + ��� �16�

for arbitrary unitary matrices Uk. In the case of a band-
structure calculation �i.e., a vanishing self-energy, �=0�, we
can choose these matrices such that they perform the desired

downfolding, i.e., both, the spectral functions Ãk=Uk
†AkUk

and the transformed Hamiltonian will acquire a block-
diagonal form. In the following, we shall distinguish be-
tween the low-energy block “L” and the high-energy block
“H.” An LDA+DMFT calculation will add local Coulomb
interactions only to the former, which will result in a self-
energy that lives in the “L” sub-block, while the orbitals of
the “H” block will remain unchanged from the many-body
�DMFT� calculation. In other words, since both sub systems
are disconnected, the block diagonality of the spectra is re-
tained throughout the calculation.

The idea is now to compute the dipole matrix elements
from the initial full system, and then to apply the same basis
transformation that block-diagonalizes the Hamiltonian also
to the velocities.

Clearly the downfolding procedure is not exact, since it
linearizes the impact of the high-energy orbitals. When solv-
ing the system with the full, nondownfolded, Hamiltonian,
the matrices that block-diagonalize the full system would not
be the same. They would even depend on frequency due to
the dynamical nature of the self-energy. Yet, when granting
the validity of the downfolding as such, and assuming the Uk
to remain unchanged with respect to the initial band struc-
ture, we can proceed further, and by specifying
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ṽk = Uk
†vkUk = 
V1 W

W† V2
�, Ãk���� = 
L 0

0 H
� ,

and Ãk��� + �� = 
L̄ 0

0 H̄
� �17�

where the spectra of the L sector are taken from the many-
body calculation. Then the above trace becomes

LV1L̄V1 + LWH̄W† + HV2H̄V2 + HW†L̄W . �18�

For transitions within the block of only correlated orbitals, L,
intervenes the Fermi-velocity matrix V1, which is evaluated
as the low-energy block of the unitary transformed matrix
element of the full, i.e., nondownfolded system. The result-
ing velocity ṽk is thus different from the matrix element that
is computed from the downfolded system. When using in
particular the Peierls expression the momentum derivative of
the unitary matrices Uk lead to additional terms in the latter
case.

Moreover, with the above, a restriction to the low-energy
block is not imperative. We can indeed calculate the com-
plete optical response, including transitions from, to, and
within the high-energy block.87 When comparing to experi-
ments, this allows to assess whether the high-energy band
structure is well describing the respective spectral weight, or
whether correlation effects modify substantially the overall
spectrum of downfolded orbitals. The latter can be brought
about, e.g., by non-negligible lifetimes, or shifts that depend
on the individual orbital.

We will refer to the above described scheme as “upfold-
ing,” since the downfolded orbitals are reintroduced for the
sake of accounting for optical transitions from, into, and be-
tween them.

IV. OPTICAL CONDUCTIVITY OF VANADIUM
DIOXIDE—AN APPLICATION OF THE FORMALISM

In a recent work,34,35 we used an analytical continuation
procedure to calculate real-frequency self-energies from
LDA+Cluster-DMFT data.33 This allowed for a better under-
standing of the impact of correlation effects, especially for
the insulating phase of VO2.

Here, we compute the optical conductivities of both the
metallic and the insulating phase. A comparison with experi-
mental results allows to further confirm the underlying
LDA+CDMFT electronic structure calculation33 and its
interpretation.34,35 Furthermore, this also enables us to ana-
lyze the experimentally measured intensities with a solid the-
oretical background.

Before analyzing our theoretical optical conductivities in
details, we here give further technical information. In the
many-body Cluster-DMFT calculation33 all orbitals other
than the vanadium t2g were downfolded. The latter thus con-
stitute the low-energy sector, L, according to Eq. �17�. For
the calculation of the Fermi velocities we use a larger Hamil-
tonian that comprises for the high-energy part, H, in particu-
lar the vanadium eg

� and the oxygen 2p orbitals, and, more-

over, the oxygen 2s.88 We sketchily write s, p, eg
� in the

graphics.89

When referring to the orientation of the electric field, or
the light polarization, we use the simple monoclinic lattice as
reference.90 Since for the Peierls Fermi velocity, Eq. �A3�,
we perform the numerical derivative of the Hamiltonian on a
discrete momentum mesh, not all directions are accessible in
a straightforward manner. Yet, the important polarizations,
E � �001� and E� �001�, are capturable. In an experiment, the
polarization is varied by choosing different orientations of
the sample, or different substrates, which, in the case of thin
films, favor different growth directions. Herewith, all orien-
tations that lie within the plane of the surface are probed,
when using unpolarized light. In our calculations, we evalu-
ate the response for single polarization only, without averag-
ing over an ensemble of in-plane directions.

As a comparison to our theoretical curves, we include
results from three experiments: we will display measure-
ments on single crystals by Verleur et al.,44 performed for
different orientations of the sample. Moreover, recently, ex-
periments were carried out on different types of thin films.
The work of Okazaki et al.1 used thin films �Tc�290 K�
with �001� orientation, i.e., for the electric field E� �001�.
Qazilbash et al.48 on the other hand used polycrystalline
films with preferential �010� orientation �Tc�340 K�. We
now proceed with the presentation of our results for the in-
dividual phases.

A. Rutile VO2—The metal

In Fig. 1 we show, along with the experimental data, our
theoretical optical conductivity of rutile VO2 for the different
light polarizations as indicated. As one can see, already the
three experiments yield quite distinguishable spectra. The
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FIG. 1. �Color online� LDA+CDMFT optical conductivity of
the rutile phase of VO2 for the indicated polarizations
��aab�= �0.85 0.85 0.53��. The velocity matrix elements were cal-
culated using the scheme of Sec. III C. Beyond the t2g orbitals this
calculation includes in particular the Veg

� and O 2p orbitals. Experi-
mental curves from �a� �Ref. 44� single crystals �orientation as in-
dicated�, �b� �Ref. 48� polycrystalline film �Tc�340 K, preferential
orientation E� �010�, T=360 K�, and �c� �Ref. 1� thin film
�Tc�290 K, E� �001� , T=300 K�.
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differences may point to a polarization dependence, but one
cannot rule out an influence of the sample type and the
means by which multiple reflections at the sample substrate
were treated in case of the thin films. Indeed, in the case of
rutile VO2, x-ray experiments22 witness a rather isotropic
response. The measurements on single crystals44 also evi-
dence a quite uniform conductivity up to 4 eV. The polariza-
tion dependence of the theoretical conductivity is found to be
rather small too, which is also in line with our previous
statement35 that the t2g self-energy shows no particular or-
bital dependence. Thus, in theory, the metallic Drude-like
response is made up from a1g and eg

� density near the Fermi
surface.

At higher energies, beyond the Drude-like tail, further
inter-“band” intra–t2g transitions occur. Yet, the optical re-
sponse is rather structureless up to 2 eV. At this energy, how-
ever, we already expect the onset of oxygen 2p-derived tran-
sitions. In order to elucidate the origin of the spectral weight
of this region in greater detail, we plot in Fig. 2 the optical
conductivity resolved into the different energy sectors, ac-
cording to Eq. �18�. Since the O 2p and the eg

� orbitals were
part of the downfolded high-energy sector, their position,
within our scheme, is frozen to the LDA result �see, e.g., the
band structure in Ref. 27�. Therefore transitions from the
O 2p orbitals into the t2g ones start, as expected, at around 2
eV. We remark that the polarization dependence for the
oxygen-derived transitions agrees very well with the single-
crystal experiments44 up to 4.5 eV. Transitions from the t2g
orbitals into the eg

� set in later, at around 2.5 eV, and are
rather small in magnitude. The O 2p to eg

� transitions appear
at the expected energies, but they are too low to be seen in
Fig. 2.

Overall, the LDA eigenvalues seem to give a rather good
description of the eg

� and O 2p orbitals, since the agreement
with experiment is reasonably accurate, as was qualitatively
noticed already in previous LDA optics calculations.53 When
looking at photoemission results,21,46 one remarks that the

onset of the oxygen 2p is compatible with the LDA, yet their
center of gravity is shifted to slightly higher binding energies
in the experiment. As to the eg

� orbitals, it is conceivable,
when resorting to x-ray experiments21,46 as a reference, that
they appear at a little larger energies and with a smaller
bandwidth than within the LDA. Of course both comparisons
are somewhat indirect, due to the occurrence of matrix ele-
ments and other effects in the experiments. Yet, we empha-
size that the rather incoherent nature of the t2g weight in the
spectral function35 is far beyond any band-structure tech-
nique, which is why the optical conductivity in the 2.5 to 4.0
eV region, derived from O 2p to t2g transitions, comes out
too large within LDA53 when comparing to the experiment of
Ref. 44, while we find a good agreement for the
LDA+CDMFT conductivity.

At this point, we can only speculate on the origin of the
shoulder and peak structure seen in one of the experiments48

at 2.5 and 3.0 eV. It seems conceivable that it stems from t2g
to O 2p transitions, rather than from eg

� contributions. Attrib-
uting the humps to distinct O 2p to a1g or eg

� transitions is
cumbersome, mostly due to the structure of the numerous
oxygen bands. When looking at the momentum-resolved op-
tical conductivity �not shown�, one realizes that O 2p to eg

�

transitions start for most of the k regions at lower energies
than transitions into the a1g.

B. Monoclinic VO2—The insulator

1. LDA+CDMFT with generalized Peierls velocities

In Fig. 3 we show our theoretical LDA+CDMFT results
for the optical conductivity of the M1 insulating phase of
VO2—again in conjunction with the three experiments.1,44,48

In Fig. 4 we further resolve the contributions to the x-axis
conductivity into their respective energy sectors, according
to Sec. III C. As was the case for the metallic phase, the
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FIG. 2. �Color online� LDA+CDMFT optical conductivity of
rutile VO2 for the �001� polarization. Shown are the different orbital
transitions according to their energy sector �see Eq. �18��. The con-
tributions are additive and sum up to the total conductivity. For
details see Sec. III C. Experimental curves, as above from Refs. 1
and 48.
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FIG. 3. �Color online� LDA+CDMFT optical conductivity of
the M1 phase of VO2 for the indicated polarizations
��aab�= �0.84 0.84 0.54��. The velocity matrix elements were cal-
culated using the scheme of Sec. III C. Experimental curves from
�a� �Ref. 44� single crystals, orientation as indicated, �b� �Ref. 1�
thin film, E� �001�, T=280 K, and �c� �Ref. 48� polycrystalline
film, preferential orientation E� �010�, T=295 K.
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experiments yield varying results. While the optical gap is
roughly 0.5 eV in all cases, the higher-energy response is
markedly different. Not only the amplitudes, but also the
peak positions differ considerably. Yet, as a matter of fact, in
the current case of M1 VO2, a sizable polarization depen-
dence is expected from the structural considerations men-
tioned above. Indeed, congruent with experimental findings,
also our calculation suggests a noticeable anisotropy in the
optical response. This is discussed in detail in paragraph 2 of
this section.

The overall agreement of our theoretical results with ex-
periments is good, especially with respect to the more recent
data.1,48 The small underestimation of the optical gap is prob-
ably owing to the elevated temperature at which the LDA
+CDMFT quantum Monte Carlo calculation was
performed.33

Crosschecking with the contribution-resolved spectrum in
Fig. 4 yields that the theoretical conductivity is basically
characterized by two onsets: the rise of spectral weight from
the optical gap onwards, and, second, the setting in of
higher-energy transitions involving oxygen orbitals at around
2.0 eV. Yet, one therewith infers that the fact that between
1.5–2.0 eV the conductivity with c-axis polarization is larg-
est, must only derive from effects within the t2g manifold.
This will be discussed in the following paragraph.

Before, we shall still remark that despite all differences in
the experiments, they reveal a common global tendency,
namely, that when going from the metal to the insulator,
low-frequency spectral weight is transferred to higher ener-
gies. Indeed, for a given polarization, the Drude-like weight
that the insulator is lacking at low energies must be recov-
ered, as requires the f-sum rule.75 This condition is met at 5.5
eV in one experiment,48 while in the other,1 an overcompen-
sation appears already at energies beyond 3.5 eV. Theoreti-
cally, when using the LDA+CDMFT conductivities, we find

values of 3.73 and 4.35 eV, for the �11̄0� and �001� direction,
respectively.

2. Approximating the one-particle spectra—“LDA+�”

In Refs. 34 and 35 we deduced from the LDA+CDMFT
self-energies an effective static, yet orbital-dependent one-
particle potential, �, that reproduced the many-body excita-
tion spectrum, which arises when neglecting all lifetime ef-
fects. This approach thus captures all correlation-induced
energy shifts, whereas the coherence of the excitations is
fictitiously infinite. This is equivalent to the use of a scissors
operator, albeit one that does not simply widen the charge
gap,53 but selectively shifts the one-particle excitations that
mediate the vanadium dimerization. For further details see
Refs. 30, 35, and 91.

The results for the optical response, which are labeled
“LDA+�,” are displayed in Fig. 5. What this theoretical
conductivity is missing are the lifetime effects encoded in the
imaginary part of the LDA+CDMFT self-energy. These
were found to be small, yet not entirely negligible.35 There-
with, comparing this simplified approach with the full con-
ductivities of Fig. 3, one instantly realizes that the LDA+�
conductivity exhibits more structures owing to the neglected
damping. While this is of course a drawback as to the realism
of the calculation, the results of this approach are more open
to interpretation, since trends are more pronounced.

Indeed, when looking at the LDA+� optical conductivity,
Fig. 5, we find more clearly that all experimental tendencies
in the polarization are reproduced: consistent with Verleur et
al.,44 the E � �001� conductivity is lower than the E� �001�
one at energies up to 1.5 eV, after which the c-axis response
develops a little maximum of spectral weight in both, experi-
ment and theory. This is identified to be owing to a splitting
of eg

� contributions to the density of states of the LDA+�
approach �see Fig. 2b in Ref. 35�.

At energies of 2.35 �Ref. 48� or 3.0 eV44 the experimental
conductivity with E � �001� components evidences a narrow
peak. In the calculation this is prominently seen at 2.75 eV.
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FIG. 4. �Color online� LDA+CDMFT optical conductivity of
M1 VO2 for the �001� polarization. Shown are the different orbital
transitions according to their energy sector �see Eq. �18��. The con-
tributions are additive and sum up to the total conductivity. For
details see Sec. III C. Experimental curve, as above from Refs. 1
and 48.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
e

σ(
ω

)
[1

03
(Ω

cm
)-1

]

ω [eV]

simplified Theory : LDA+∆
E || [001]
E || [1-10]
E || [aab]

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
e

σ(
ω

)
[1

03
(Ω

cm
)-1

]

ω [eV]

simplified Theory : LDA+∆

Experiments

Insulator
(LDA+∆)

Verleur et al. E || [001]
Verleur et al. E ⊥ [001]
Okazaki et al.
Qazilbash et al.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
e

σ(
ω

)
[1

03
(Ω

cm
)-1

]

ω [eV]

simplified Theory : LDA+∆

Experiments

Insulator

Verleur et al. E || [001]
Verleur et al. E ⊥ [001]
Okazaki et al.
Qazilbash et al.

FIG. 5. �Color online� Optical conductivity of the M1 phase of
VO2 for the indicated polarizations ��aab�= �0.84 0.84 0.54�� when
using the effective band-structure �Ref. 35� “LDA+�.” Experimen-
tal curves from �a� �Ref. 44� single crystals �orientation as indi-
cated�, �b� �Ref. 1� thin film �E� �001� , T=280 K�, and �c�
�Ref. 48� polycrystalline film �preferential orientation E� �010�,
T=295 K�
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When looking at our effective band structure,34,35 it seems
plausible that these transitions stem from a1g bonding to an-
tibonding orbitals. The peak is indeed very narrow for an
interband transition, but in our picture this is simply owing to
the fact that the a1g antibonding excitation does exhibit an
almost dispersionless behavior.34,35 We note however, that
already in this frequency region transitions that involve the
oxygen 2p orbitals start to set in.

At still higher energies, the E � �001� response is again
lower than for the perpendicular direction in both experiment
and theory. The overall congruity with experiments further
corroborates the validity of our effective band-structure pic-
ture for spectral properties and therewith strengthens our in-
terpretation of the nature of the insulating phase of VO2 as a
realization of a “many-body Peierls” state.35

The peak that we attributed to a1g−a1g transitions, and
which is prominent in both the experimental and LDA+�
conductivity with E � �001� polarization, is largely suppressed
in the full many-body conductivity, Fig. 3, and only faintly
discernible as a weak shoulder, when comparing with the
other polarizations. As an explanation for this difference be-
tween experiment and the approach of the one-particle po-
tential � on the one hand and the LDA+CDMFT result on
the other, we forward the occurrence of sizable lifetime ef-
fects in the LDA+CDMFT electronic structure calculation.
Indeed the a1g spectral weight in the corresponding t2g
LDA+CDMFT spectral function is not sharply defined and
extends over more than 2 eV, and is only barely discernible
in the total orbitally traced spectrum.33 When thinking of the
conductivity in simple terms of density-density transitions, it
is perfectly conceivable that the a1g−a1g response eventuates
only in a tail of spectral weight �as seen in the energy sector
resolved conductivity in Fig. 4� and not in a well-defined
peak. Having said this one might thus conjecture that these
lifetime effects �although already considered low�34,35 are
still overestimated in the LDA+CDMFT calculation. More-
over, we stress again that the many-body electronic structure
was computed at high temperatures,33 which will lead to an
overestimation of the temperature-induced part of the broad-
ening.

C. Approximating the Fermi velocities: A word of caution

In this section we shall briefly show that all the trouble
with the Fermi velocity is worth the effort. Therefore, we
plot in Fig. 6 for the case of M1 VO2 a comparison of our
full scheme, which proved to yield quantitatively accurate
results, with two simplified calculations. These differ from
the full scheme only in the way how the Fermi velocities,
i.e., the transition amplitudes are treated. We restrict the dis-
cussion to the t2g response.

To illustrate the effect of the downfolding of orbitals on
the matrix elements, we have computed the optical conduc-
tivity when applying the generalized Peierls formula on the
downfolded Hamiltonian. As we can see, the resulting curves
differ considerably from those using the upfolding scheme.
In particular, the absolute value for some polarizations is
way off with respect to experiment.

It has become a popular approximation to entirely neglect
Fermi velocities in the computation of optical properties.

Therewith the conductivity is a simple convolution of
momentum-resolved spectral functions. As a consequence in-
terband transitions are omitted, since the Fermi velocities are
simple-unit matrices. Especially in the realistic context this is
a severe oversimplification.

Moreover, by construction, there cannot be any orbital
dependence in the conductivity, while, as evidenced from the
experiments, this is clearly an important issue for M1 VO2.
Also, the magnitude of intraband transitions is not properly
accounted for. In fact, the absolute value of the response is
not well defined. In order for this approach to yield a com-
parable magnitude, we arbitrarily choose a prefactor:

vk
LL�=2r0�LL�, with r0 being the Bohr radius. As can be in-

ferred from Fig. 6, the resulting peak structure of the optical
conductivity is wrong.

Also, we compute the optical conductivity when neglect-
ing the multiatomic correction term in the velocities, i.e.,
using only the derivative of the Hamiltonian. As was the case
for the velocities of the downfolded case, only for one polar-
ization does this yield a reasonable result.

Finally, we stress that the requirement of localized basis
functions within the Peierls approach shows that another
practice, namely, that of replacing the Fermi velocity by the
group velocity, 1 /	��k

L /�k, is a particularly bad approxima-
tion, owing to the delocalized character of the effective one-
particle �Kohn-Sham� wave functions.

V. CONCLUSIONS

In conclusion we presented a versatile scheme for the cal-
culation of optical properties of correlated materials. Geared
at the use with a localized basis set, we devised a realistic
extension of the Peierls substitution approach. Moreover, we
developed means to incorporate transitions that involve high-
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FIG. 6. �Color online� LDA+CDMFT t2g optical conductivity
of the M1 phase for the indicated polarizations
��aab�= �0.85 0.85 0.53�� and different Fermi velocities. The “up-
folded” curves correspond to our full scheme. The “downfolded”
data compute the Fermi velocities from the downfolded Hamil-
tonian. “no velocites” refers to a simple convolution of spectral
functions without transition amplitudes. The “dH/dk” curves corre-
spond to neglecting the multiatomic generalization in the velocities.
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energy orbitals that were downfolded in the many-body treat-
ment of the electronic structure.

As an application, we evaluated the optical conductivity
of VO2 for both the metallic and the insulating phase. While
the metal is characterized by a rather isotropic response, the
insulator revealed a noticeable polarization dependence. The
agreement with experiments is overall satisfying. The
high-energy conductivity is reasonably described when using
the LDA band structure for high-lying orbitals. The
LDA+CDMFT many-body calculation for the t2g orbitals
correctly describes the low-energy behavior. In the rutile
phase it accounts for lifetime effects within the t2g orbitals
and therewith also for the damping of oxygen to t2g transi-
tions with respect to LDA results. In the insulator, it allowed
for a genuine reproduction of the experimental t2g response,
capturing in particular the polarization dependence over a
wide energy range. The congruity of experiment and theory
for the t2g spectral weight can be interpreted as corroborating
the validity of the underlying many-body calculation for the
electronic structure along with its interpretation.

ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with L.
Baldassarre, N. Bontemps, A. Georges, K. Haule, H. J. Kim,
G. Kotliar, A. I. Lichtenstein, R. Lobo, A. I. Poteryaev, M.
M. Qazilbash, G. Sangiovanni, and A. Toschi. This work was
supported by Idris, Orsay, under Project No. 091393, and the
French ANR under project title CORRELMAT.

APPENDIX: CONTINUUM FORMULATION OF THE
TRANSITION MATRIX ELEMENTS

1. Derivation of the generalized Peierls velocity in the
continuum

Starting from the general Fermi velocity, Eq. �7�, which
originated from the continuum formulation, we here rederive
the generalized Peierls expression as an approximation. The
correctional terms contain all intra-atomic transitions, that
were completely lacking in the lattice theory, as well as con-
tributions that are owing to the spatial extensions of the wave
functions in the solid.

Using P�=−ım /	�R� ,H0�, the element of Eq. �7� can be
written

1

m
�kL��P��kL� = −

ı

	

1

N �
R,R�

eık�R−R��

�� d3r��R�L��R��r��r�H0�RL�

− �R�L��H0�r��r�R��RL�� . �A1�

It is important to note, that here the position operator R� is
defined in the continuum. Its effect in the position represen-
tation is �r�R��RL�=r��RL�r�. This is to be contrasted to the
discrete lattice version of Eq. �11�. Moreover, one has to
make a clear distinction between the continuous space-
variable r and the discrete unit-cell label R. In the �unphysi-
cal� limit of completely localized wave functions,

�r �RL�=�RL�r����r−RL�, this distinction is relaxed, and
we recover the expression Eq. �14� of the Peierls approach,
as we shall see. Such as in the lattice case, we split the
atomic positions into RL

�=R�+
L
�. Then the above becomes

1

m
�kL��P��kL� = −

ı

	

1

N �
R,R�

eık�R−R��

��R�� − R� + 
L�
� − 
L

���R�L��H0�RL�

+� d3rr���R�L��r + R� + 
L���r + R�

+ 
L��H0�RL� − �R�L��H0�r + R + 
L��r + R

+ 
L�RL��� , �A2�

where we have chosen to condense everything into two dif-
ferent terms. The first one obviously is

1

	

 �

�k�

�kL��H0�kL� − ı�
L�
� − 
L

���kL��H0�kL�� , �A3�

which is exactly the generalized Peierls expression, Eq. �14�.
The merit of the Peierls approximation, in particular in real-
istic calculations, is its apparent simplicity. Indeed no matrix
elements other than the Hamiltonian need to be calculated.
The latter is a quantity that is anyhow required for a many-
body calculation, and one thus has only to perform the direc-
tional momentum derivative.92 From the discussion of the
Peierls substitution above, it is clear that the second term in
Eq. �A2� accounts on the one hand for all atomic transitions
�R=R� and �=�, yet it also contains contributions that
arise from the fact that we started from a continuum formu-
lation. In other words, the spatial extensions of the wave
functions lead to interatomic, ��, corrections, owing to
their finite overlap. Yet, a direct evaluation of these terms is
an intricate undertaking, since it involves the calculation of
many integrals. Therefore, it is a valid question whether the
generalization of the Peierls approach, as such, already gives
a reasonable approximation, without considering the terms
beyond it, and if so, under which circumstances. Though the
regrouping of terms into the Peierls expression and the rest
was guided from the lattice considerations, it might still
seem somewhat arbitrary. The next section however reveals
that the intuition of an increased validity of the Peierls ap-
proach with a better localization of the involved orbitals is
actually warranted.

2. The Peierls substitution as the localized limit

In the following, we will make consecutive approxima-
tions regarding the extension of the orbitals, which lead, step
by step, to more simplified correction terms to the Peierls
expression Eq. �A3�, which one might endeavor to take into
account in an actual computation. Moreover, these approxi-
mative steps will rationalize the identification of the Peierls
term as the leading contribution to the Fermi velocities in the
considered setup.
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By assuming well-localized orbitals, we thus proceed to
cut down the expression in question to the predominant
terms, which will be given by the integrals that involve wave
functions that have a large overlap.93 Indeed, we show that in
the limit of perfect localization �or equivalently in the limit
of large atomic separation� the only surviving transition ele-
ments are given by the intra-atomic contributions, that were
missing in the Peierls formulation. Using �r+R �RL�
=�RL�r+R�=�0L�r�, the terms beyond the Peierls ones can
be put into the form

−
ı

	

1

N �
R,R�

eık�R−R��� d3rr� �
�,L�

���0L�
� �r + 
L���0L��r + R� − � + 
L����L��H0�RL�

− �0L�
� �r + R − � + 
L��0L�r + 
L��R�L��H0��L��� .

�A4�

In this formula the origins of all intervening wave functions
lie within the same unit cell, labeled “0.”94 In a first step, the
assumed localization of the involved orbitals makes it rea-
sonable to identify important terms in the sum as those,
where the arguments of the wave functions also lie within the
same unit cell, i.e., �=R� in the first term and �=R in the
second one. We note that within this approximation, only the
Hamiltonian element depends on the unit-cell labels R and
R�, and we can thus directly perform the Fourier transforma-
tion, yielding

−
ı

	
� d3rr��

L�

��0L�
� �r + 
L���0L��r + 
L���kL��H0�kL�

− �0L�
� �r + 
L��0L�r + 
L��kL��H0�kL��� . �A5�

This means that the entire momentum dependence, in this
approximation, is carried by the Hamiltonian. The complex-
ity of the occurring matrix elements of the position operator
has been considerably reduced. In the one-atomic case, i.e.,
=�=�, and when using the short-hand notation

R�,0
LL�= �0L�R��0L��, H0

LL��k�= �kL�H0�kL�� we simply have

−
ı

	
�R�,0,H0�k��L�L. �A6�

This is reminiscent of the relation 1 /mP=−ı /	�R ,H0�,
which we used in the beginning. Here, however, intervene
on-site matrix elements rather than the full position operator.

Indeed these elements, R�,0
LL�, are well-known in atomic phys-

ics: they give the usual amplitudes for atomic dipolar transi-
tions: The angular part of the integral will produce the cor-
responding dipole selection rules ��l= �1, �m=0, �1� via
Clebsch-Gordon coefficients �see, e.g., Ref. 84�, when, as we
have assumed, the wave functions have a well-defined angu-
lar momentum �l ,m�. Contrary to the atomic case, however,
the Hamiltonian is momentum dependent, owing to the fact
that, though regarding atomic transitions, the “atom” is here
embedded in a solid. Also, the above term reminds the form
of the multiatomic correction term in Eq. �A3�, only that
there occurred fixed atomic positions 
, which commute

with the Hamiltonian, which is why in Eq. �A3� only the
nonlocal terms �� appear.

Coming back to the multiatomic case, we have to make a
further approximation in order to obtain an expression con-
taining atomic transitions only. Yet, the shifts in the wave
functions of Eq. �A5� can be treated analogous to the unit-
cell coordinates: indeed �0L�r+
L� is centered around the
position of atom . When, for the sake of clarity, we rename
�̃0L�r�=�0L�r+
L� we find

−
ı

	
� d3rr��

L�

��̃0L�
� �r��̃0L��r + 
L� − 
L���kL��H0�kL�

− �̃0L�
� �r + 
L − 
L���̃0L�r��kL��H0�kL��� . �A7�

From this expression it is plausible, that for localized orbitals
atomic transitions ��=� and �=, respectively� are in fact
predominant. When restraining ourselves to these cases, we
thus drop entirely the corrections to hopping processes that
stem from the finite extensions of the wave functions and
end up with

−
ı

	
� d3rr�	 �

L�

�=�

�̃0L�
� �r��̃0L��r��kL��H0�kL�

− �
L�

�=

�̃0L�
� �r��̃0L�r��kL��H0�kL���

= −
ı

		 �
L�

�=�

�0L�˜�R��0L�˜��kL��H0�kL�

− �
L�

�=

�0L�˜�R��0L˜��kL��H0�kL��� . �A8�

Here, only the terms in which the Hamiltonian element is
diagonal in the atomic index  can be written in the form of
a commutator, as was the case in the one-atomic case in Eq.
�A6�. In total, the above term contains intra-atomic transi-
tions only. These were completely missing in the Peierls ap-
proach, as explained above. Under the assumptions on the
localization of the involved orbitals, the Peierls term, Eq.
�A3�, thus turns out to be the most important contribution to
the Fermi velocity. Intuitively, this approach is thus particu-
larly suited for systems in which, e.g., 3d or 4f orbitals play
an important role, since these verify the request of a high
degree of localization.

Another point worth noticing is the fact that, when using
the Peierls approximation, the result of the conductivity is
actually basis dependent. It is the momentum derivative of
the Hamiltonian, which constitutes the first term in Eq. �A3�,
that transforms evidently differently than the Hamiltonian
itself. Obviously this is an artifact of the approximations
from which the Peierls expression eventuated. Since, how-
ever, the term corresponds to the limit of perfect localization,
it is expected to still yield reasonable results for orbitals that
are short ranged. We will come back to this in the next para-
graph, in the context of Fermi velocities for downfolded
Hamiltonians.
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Improvements to the above approximations are obvious:
one could, e.g., take into account elements containing
nearest-neighbor wave functions within the same unit cell, or
even account for wave functions centered in different unit
cells. An evaluation of these terms in principle allows for a
more quantitative assessment of the quality of the Peierls

term. However, the matrix elements that one needs to evalu-
ate are numerous and more complex since they explicitly
involve various wave functions. We stress again that these
terms are interatomic corrections to the Peierls term, while
the intra-atomic contributions are absent in the Peierls for-
malism by construction, and given by Eq. �A8�.
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